Abstract

With the increase of power density of electronic devices, there is a compromise between thermal conductivity and stretchability of thermal interface materials to reduce thermal contact resistance, enhance interfacial heat transfer, and relieve the warpage failure caused by stress concentration. Here, we report on the styrene-ethylene/butylene-styrene block copolymer (SEBS)/flake graphite composite thermal interface materials, fabricated via the vertical orientation of flake graphite. When the mass ratio of flake graphite to SEBS is 1:1, the thermal interface material exhibits a high out-of-plane thermal conductivity of 10.08 W/(m K) and maintains a considerable stretchability (elongation at break of 63%). The balance of thermal conductivity and stretchability keeps the thermal contact resistance of thermal interface material at a low value of 0.51×10-4 K ·m2/W. The thermal interface material consisted of SEBS/flake graphite builds a new way to address the challenge of thermal management in modern electronic products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.