Abstract

This paper is focused on thermally assisted magnetic random access memories (TA-MRAMs). It explains how the heating produced by Joule dissipation around the tunnel barrier of magnetic tunnel junctions (MTJs) can be used advantageously to assist writing in MRAMs. The main idea is to apply a heating pulse to the junction simultaneously with a magnetic field (field-induced thermally assisted (TA) switching). Since the heating current also provides a spin-transfer torque (current-induced TA switching), the magnetic field lines can be removed to increase the storage density of TA-MRAMs. Ultimately, thermally induced anisotropy reorientation (TIAR)-assisted spin-transfer torque switching can be used in MTJs with perpendicular magnetic anisotropy to obtain ultimate downsize scalability with reduced power consumption. TA writing allows extending the downsize scalability of MRAMs as it does in hard disk drive technology, but it also allows introducing new functionalities particularly useful for security applications (Match-in-Place™ technology).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.