Abstract

Excited-state intramolecular proton transfer (ESIPT) molecules demonstrating specific enol-keto tautomerism and the related photoluminescence (PL) switch have wide applications in displaying, sensing, imaging, lasing, etc. However, an ESIPT-attributed coordination polymer showing alternative PL between thermally activated fluorescence (TAF) and long persistent luminescence (LPL) has never been explored. Herein, we report the assembly of a dynamic Cd(II) coordination polymer (LIFM-101) from the ESIPT-type ligand, HPI2C (5-(2-(2-hydroxyphenyl)-4,5-diphenyl-1H-imidazol-1-yl)isophthalic acid). For the first time, TAF and/or color-tuned LPL can be achieved by controlling the temperature under the guidance of ESIPT excited states. Noteworthily, the twisted structure of the HPI2C ligand in LIFM-101 achieves an effective mixture of the higher-energy excited states, leading to ISC (intersystem crossing)/RISC (reverse intersystem crossing) energy transfer between the high-lying keto-triplet state (Tn(K*)) and the first singlet state (S1(K*)). Meanwhile, experimental and theoretical results manifest the occurrence probability and relevance among RISC, ISC, and internal conversion (IC) in this unique ESIPT-attributed coordination polymer, leading to the unprecedented TAF/LPL switching mechanism, and paving the way for the future design and application of advanced optical materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call