Abstract
Flexible scintillator screens with environmental stability, high sensitivity, and low cost have emerged as candidates for X-ray imaging applications. Here, a large-scale and cost-efficient solution synthesis of the vacancy-ordered double perovskite Cs2 ZrCl6 , which is characterized by thermal activation delayed fluorescence (TADF) dominated by triplet emission under X-ray irradiation, is demonstrated. The large Stokes shift and efficient luminescence collection of TADF effectively ensure the light outcoupling efficiency. Further, flexible X-ray scintillator screens with an area of 400 cm2 are prepared using poly(dimethylsiloxane) (PDMS) as the carrier, exhibitingexcellent scintillation properties with light yields as high as 49400 photons MeV-1 , spatial resolutions up to 18 lp mm-1 and detection limits as low as 65 nGy s-1 . Finally, the high-quality imaging results of non-planar and dynamic objects by such screens are demonstrated. It is believed that the explored Cs2 ZrCl6 @PDMS flexible scintillator screens would offer a big step toward expanding the application range of scintillators in different environments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have