Abstract
The influence of the local crystallographic orientation of the polycrystalline bottom platinum electrode on the crystallization of niobium pentoxide thin films during their rapid thermal annealing was investigated by X-ray diffraction, X-ray reflectivity and transmission electron microscopy. The Nb2O5 thin films under study were reactively sputtered in a mixed O2/Ar atmosphere and subsequently subjected to the annealing in argon atmosphere at temperatures ranging from 500 ∘C to 700 ∘C. The X-ray diffraction confirmed a transition from the amorphous niobium oxide to the crystalline orthorhombic Nb2O5 for temperatures between 500 ∘C and 600 ∘C. The X-ray reflectivity measurements showed that the crystallization process was accompanied by a continuous increase of the electron density in Nb2O5 and by a rapid increase of the surface roughness at 700 ∘C. It was further observed by transmission electron microscopy that Nb2O5 crystallizes selectively and that the crystalline domains of Nb2O5 possess a strong orientation relationship to the platinum from the bottom electrode. The orientation relationship \((\bar{1} 1 1)_{\mathrm{Pt}}\,{\parallel}\, (\bar{1} \bar{6}0)_{\mathrm{Nb}_{2}\mathrm{O}_{5}}\) was identified as the most beneficial one for crystallization of Nb2O5.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have