Abstract

Single aerosol particles of ethylene glycol and oleic acid are vaporized on a heater at temperatures between 500 and 700 K, and the resulting vapor plume is ionized by a 10.5-eV vacuum ultraviolet (VUV) laser. The mass spectra are compared to those obtained by CO2 laser vaporization followed by VUV laser ionization. The relative intensities of the parent and fragment ion peaks are remarkably similar for the two modes of vaporization. A Maxwell-Boltzmann distribution of speeds accurately describes the dependence of the signal as a function of the VUV laser pulse timing. The signal levels obtained with this design are sufficient to obtain good-quality mass spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.