Abstract
By coupling a comprehensive tunable vacuum ultraviolet (VUV) laser system to a velocity-mapped ion imaging apparatus, we show that high-resolution high-n Rydberg tagging time-of-flight (TOF) measurements of nascent atomic photofragments formed by laser photodissociation can be made using single-photon VUV laser photoexcitation. To illustrate this single-photon Rydberg tagging TOF method, we present here the results of the VUV laser high-n Rydberg tagging TOF measurements of O((3)P(2)) and S((3)P(2)) formed in the photodissociation of SO(2) and CS(2) at 193.3 and 202.3 nm, respectively. These results are compared to those obtained by employing the VUV laser photoionization time-sliced velocity-mapped ion imaging technique. The fact that the kinetic energy resolutions achieved in the VUV laser high-n Rydberg tagging TOF measurements of O and S atoms are found to be higher than those observed in the VUV laser photoionization, time-sliced velocity-mapped ion imaging studies show that the single-photon VUV laser high-n Rydberg tagging TOF method is useful and complementary to state-of-the-art time-sliced velocity-mapped ion imaging measurements of heavier atomic photofragments, such as O and S atoms. Furthermore, the general agreement observed between the VUV laser high-n Rydberg tagging TOF and velocity-mapped ion imaging experiments supports the conclusion that the lifetimes of the tagged Rydberg states of O and S atoms are sufficiently long to allow the reliable determination of state-resolved UV photodissociation cross sections of SO(2) and CS(2) by using the VUV laser high-n Rydberg tagging TOF method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.