Abstract

This chapter presents a formulation of the thermal unit commitment problem that includes nonlinear power flow constraints, thus allowing a more accurate representation of the network than is possible with DC flow models. This also permits potential VAr production to be used as a criterion for commitment of otherwise expensive generators in strategic locations. We use a Lagrangian relaxation framework with duplicated variables for each active and reactive source, permitting the exploitation of the separable structure of the dual cost. Results for medium-sized systems in a parallel processing environment are available.KeywordsPower FlowLagrangian RelaxationUnit CommitmentOptimal Power FlowUnit Commitment ProblemThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.