Abstract

Polybrominated diphenyl ethers (PBDEs) were commonly used flame retardants in the world, while some of PBDEs have been listed as persistent organic pollutants (POPs). Decabrominated diphenyl ether (BDE-209) was the most commercially used PBDEs. A farm near the factory located in Northern Taiwan was highly contaminated with BDE-209. Since PBDEs in the contaminated soils can be uptake by crops shown in our previous studies and could be potentially consumed by humans, it is very important to establish a feasible treatment method for PBDE remediation in this contaminated farm. Thermal treatment of PBDEs in soil was studied. The initial concentration of BDE-209 in contaminated soil was 1.472 mg/kg. A series of thermal experiments under different operating conditions including various temperature (105, 150, 200, 250, 300, 350, 400 and 450 °C), holding time (10, 20 and 30 min), heating rate (5, 10, 20 and 40 °C/min), and soil amount (10, 100, 1000 and 2000 g) were investigated. The optimal heating conditions for thermal treatment of contaminated soil were heating at 450 °C for 30 min with a heating rate of 10 °C/min. Under this condition, the removal of BDE-209 in the different weights of contaminated soil was tested. The soils in the contaminated farm were tested to further evaluate the feasibility of remediating the on-site PBDE contaminated soil through thermal treatment, suggesting that the holding time was extended to 2 h for the field-scale contaminated soil. The results showed that BDE-209 had been removed to below the detection limit in on-site soil. This investigation is the first study using thermal treatment to remediate soils really contaminated with PBDEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call