Abstract

A plasma–particle interactive flow model has been developed for the investigation of plasma temperature, velocity, particle temperature, diameter, and flight path during in-fight thermal treatment of granulated powders – Al2O3, MgO, and CeO2 in induction thermal plasma, taking into account of plasma particle interaction and particle loading effects. In this model, the conservative equations are solved to investigate the influence of feed-rate and particle diameter on the melting behavior of granulated powders and to predict particle trajectories, temperature histories etc. In this paper attention is given to the effects of carrier gas flow-rate, powder feed-rate and secondary gas (oxygen) flow-rate on the particles' final diameter and trajectory for Al2O3, MgO, and CeO2 powders. Results show that the particles diameter after thermal treatment is strongly dependent on the powder feed-rate, oxygen gas flow-rate and carrier gas flow-rate. Among the three types of powders, particle diameter decrement is significant in case of MgO and less significant in case of Al2O3; and the effect of oxygen flow-rate on the particle diameter decrement is significant in case of MgO. Particles trajectories are wider for smaller particles than that of larger particles. Particle temperature is lowest for MgO and highest for Al2O3 particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.