Abstract

An innovative in-flight glass melting technology with thermal plasmas was developed for the purpose of energy conservation and environment protection. In this study, modelling and experiments of argon-oxygen induction thermal plasmas were conducted to investigate the melting behaviour of granulated soda-lime glass powders injected into the plasma. A two-dimensional local thermodynamic equilibrium (LTE) model was performed to simulate the heat and momentum transfer between plasma and particle. Results showed that the particle temperature was strongly affected by the flow rate of carrier gas and the particle size of raw material. A higher flow rate of carrier gas led to lower particle temperature and less energy transferred to particles which resulted in lower vitrification. The incomplete melting of large particles was attributed to the lower central temperature of the particle caused by a larger heat capacity. The numerical analysis explained well the experimental results, which can provide valuable practical guidelines for the process control in the melting process for the glass industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.