Abstract

Generation IV reactors are being developed to produce a reliable energy safely and with an economic benefit, because nuclear energy is being seriously considered to meet the increasing demand for a world-wide energy supply without environmental effects. Ferritic/martensitic steels are attracting attention as candidate materials for the Gen-IV reactors due to their high strength and thermal conductivity, low thermal expansion, and good resistance to corrosion. In recent years, new ferritic/martensitic steels have been developed for ultra supercritical fossil power plants through advanced technologies for steel fabrication. The microstructural stability of these materials for the pressure vessel, cladding and core structure of the VHTR and SFR is very important. Nitrogen is a precipitation hardening element, and the thermal stability of nitrides is superior to that of carbides. So the formation of nitrides may improve the thermal stability of the microstructure and eventually increase the creep rupture strength of high Cr steels. The effect of nitrogen on the creep rupture strength and microstructure evolution of nitrogen-added Mod.9Cr-1Mo steels has been studied. Creep testing was carried out at 873 and 923 K under constant load conditions. The optimum controlled Cr2X precipitates were developed by special heat treatment, and they were not dissolved after a creep deformation. These fine and stable Cr2X precipitates contributed to the increase of the creep rupture strength. The prior austenite grain size and martensite lath width were decreased by the resultant stable nitrides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.