Abstract
Abstract A newly developed ferritic heat-resistant steel; 9Cr-3W-3Co-Nd-B steel has higher creep rupture strength both in the base metal and welded joints than the conventional high-Cr ferritic heat-resistant steels. The creep rupture strengths of 9Cr-3W-3Co-Nd-B steel welded joints were below the lower limit of the base metal in long-term creep stage more than 20,000 hours. The creep rupture position was heat-affected zone (HAZ) from 1.0 to 1.5 mm apart from the fusion line on the welded joint specimen ruptured at 34,966 hours. The equiaxed subgrains and coarsened precipitates were observed in HAZ of the ruptured specimen. In order to clarify the creep fracture mechanism of the welded joints, the microstructures of HAZ were simulated by heat cycle of weld, then observed by EBSD analysis. Fine austenite grains formed along the prior austenite grain boundaries in the material heated just above AC3 transformation temperature, however there were no fine grains such as conventional steel welded joints. The prior austenite grain boundaries were unclear in the material heated at 1050 °C. The creep rupture life of the material heated at just above AC3 transformation temperature exceeded the lower limit of base metal and there was no remarkable degradation, although it was shorter than the other simulated materials. It is, therefore, concluded that the creep fracture of 9Cr-3W-3Co-Nd-B steel welded joint in long-term stage occurred at HAZ heated at from just above AC3 transformation temperature to 1050 °C. It is speculated that the fine austenite grains formed along the prior austenite grain boundaries and inhomogeneous microstructures cause the coarsening precipitates and recovery of lath structure during long-term creep deformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.