Abstract

Silicon carbide is used as a substrate for high-power GaN devices because of its closely matched lattice spacing with GaN and its high thermal conductivity. In these devices, thermal resistance at the GaN–SiC interface is a bottleneck to heat flow, making this property an important factor in device design. In this letter, we report the first measurements of the thermal boundary conductance of epitaxial GaN grown directly on SiC without a transition layer. We find that the thermal boundary conductance increases from approximately 230 MW/m2K at 300 K to 330 MW/m2K at 600 K. Our measured values are in good qualitative agreement with the diffuse mismatch model for thermal boundary conductance and are in good quantitative agreement when we include a correction factor based on the ratio of Debye temperatures of the two materials. We also report the thermal conductivity of the GaN film, the thermal conductivity of 4H-SiC, and the thermal boundary conductance between Ni and GaN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.