Abstract

Using the nonequilibrium Green's function method, we consider heat transport in an insulating ferromagnetic spin chain model with spin-phonon interaction under an external magnetic field. Employing the Holstein-Primakoff transformation to the spin system, we treat the resulted magnon-phonon interaction within the self-consistent Born approximation. We find the magnon-phonon coupling can change qualitatively the magnon thermal conductance in the high-temperature regime. At a spectral mismatched ferromagnetic-normal insulator interface, we also find thermal rectification and negative differential thermal conductance due to the magnon-phonon interaction. We show that these effects can be effectively tuned by the external applied magnetic field, a convenient advantage absent in anharmonic phonon and electron-phonon systems studied before.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.