Abstract

The crystallization and melting behaviors of the polyesterimide, derived from N, N′-hexane-1,6-diylbis(trimellitimides), 4,4′-dihydroxybenzophenone and p-hydroxybenzoic acid, were investigated by using polarized light microscopy (PLM), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). The nematic texture of the polyesterimide was observed on raising temperature to 265 °C, and the nematic phase was found to convert to isotropic melt beginning from about 300 °C, the ordered nematic micro-domains still surviving after 320 °C. Isothermal crystallization of the samples was performed at 180 °C after heating samples at various temperatures in the range of 265–360 °C, and a completed crystallization peak can appear on DSC curves up to the heating temperature of 360 °C in the presence of the nematic phase and the ordered nematic micro-domains. Non-isothermal crystallization of the samples at different cooling rate was carried out, and the melting of the resulting crystals exhibits double endotherms. It is indicated that a fast crystallization in the nematic phase forms relatively more ordered crystals, which melt at higher temperature, and a slow crystallization in the isotropic phase or in the biphasic melt produces poor crystals, which melt at lower temperature. The crystallized polyesterimide was annealed, which has a minor effect on the high-melting peak but leads to a continual shifting of the low-melting peak to higher temperature with increasing annealing temperature or annealing time. WAXD patterns indicated that the structural transform was not found during annealing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.