Abstract

Schwertmannite is a metastable mineral playing a crucial role in the immobilization of metal(oid)s in acid mine drainage (AMD) systems. High temperatures associated with wildfires could lead to a sudden schwertmannite transformation, changing the mobility of metal(oid)s. The objective of the present study was to examine the thermal transformation from schwertmannite to hematite, and the subsequent effect on the chromium partitioning. The immobilization of arsenate after thermal transformation and its implications on chromium mobility was also evaluated. Natural schwertmannite, with increasing contents of chromium, was thermally treated between 200 to 800 °C. Transformation products were characterized by solid-phase techniques and selective chemical extractions. Results indicated a transformation to hematite at temperatures above 400 °C. The presence of chromium barely affected the temperature at which the transformation occurred, although partitioning of chromium in the mineral changed with temperature. As the temperature increased from 25 °C to 400 °C, chromium was less mobile and less outcompeted by arsenic adsorption, suggesting a larger contribution of inner-sphere complexes with increasing temperature. At temperatures above 600 °C, non-mobile forms strongly associated with neo-formed hematite were found. Finally, neo-formation of hematite led to a decrease in arsenic adsorption, implying a potentially enhanced arsenic mobility in AMD systems upon wildfires.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call