Abstract

The high usage of silver in industrial solar cells may limit the growth of the solar industry. One solution is to replace Ag with copper. A screen printable Cu paste is used herein to metallize industrial interdigitated back contact (IBC) solar cells. A novel metallization structure is proposed for making solar cells. Cu paste is applied to replace the majority of the Ag used in IBC cells as busbars and fingers. Cu paste is evaluated for use as fingers, and solar cells are made to test conversion efficiency and reliability. The Cu paste achieves comparably low resistivity, and Cu paste printed cells demonstrate similar efficiency to Ag paste printed cells, with an average efficiency of 23%, and only 4.5 mg W−1of Ag usage. Also, the solar cells are stable and no Cu in‐diffusion is observed under damp heat (85 °C, 85% relative humidity) and thermal stress (200 °C) for 1000 h, respectively. All processes used in this study can be carried out with industrial equipment. These findings reveal a new application for Cu pastes and point to a new direction for reducing Ag utilization and cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.