Abstract

Hard coatings deposited by physical vapour deposition based on the transition metal nitrides are nowadays widely applied to reduce tool wear. The aim of this paper is to show how microstructural parameters like grain size, stress and chemical and phase composition influence the thermal stability of different hard coatings. This is demonstrated using single-phase coatings like TiN, (Ti, Al, V)N and CrN as well as the dual-phase nanocomposite coatings CrN–Cr 2N and TiN–TiB 2. It is shown that the resistance against recovery and recrystallization can be improved by introducing a high density of phase boundaries, as is the case for nanocomposite coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.