Abstract
D019-Mn3Sn, an antiferromagnet having a non-collinear spin structure in a kagome lattice, has attracted great attention owing to various intriguing properties such as large anomalous Hall effect. Stability of a magnetic state against thermal fluctuation, characterized in general by the thermal stability factor Δ, has been well studied in ferromagnetic systems but not for antiferromagnets. Here, we study Δ of the antiferromagnetic Mn3Sn nanodots as a function of their diameter D. To quantify Δ, we measure the switching probability as a function of the pulse-field amplitude and analyze the results based on a model taking account of two and sixfold magnetic anisotropies in the kagome plane. We observe no significant change in Δ down to D = 300 nm below which it decreases with D. The obtained D dependence is well explained by a single-domain and nucleation-mediated reversal models. These findings provide a basis to understand the thermal fluctuation and reversal mechanism of antiferromagnets for device applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.