Abstract

The increase in the LED junction temperature is an important problem since it directly affects the lumen output and the colour characteristics of the LED chips, resulting in low performance in LED-based lighting systems. In this study, commercial computational fluid dynamics software is used with the JEDEC’s two-resistor compact thermal model to analyse the temperature distribution in two selected luminaires. It is aimed to show that use of the two-resistor model and measurement combination is a fast and easy way of predicting thermal behaviour of the system and LED junction temperatures instead of trial and error designs and thus ensures a better estimation for the total luminous flux of the luminaire and lowers the costs and time required for the prototyping processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.