Abstract

Small Form-factor Pluggable (SFP) transceivers are commonly used in fiber optics based networks. Detailed CFD model demands a lot of mesh counts and is computationally prohibitive in system and board level simulations. In the present study, detailed SFP models have been simulated at 24 different boundary conditions consisted of four system airflow velocities, three power dissipations and two PCB board thermal conductivities. A two-resistor compact model has been derived based on the simulated heat fluxes and case temperatures of detailed SFP models. The case temperatures simulated from two-resistor model are benchmarked to the results from detailed SFP model. The two-resistor model has been compared with detailed SFP and DELPHI models strictly under the same condition. It has been shown with consistent accuracy. The advantages of using this model lie on modeling simplicity requiring the least grid resolution, easy scalability to different power dissipations, and great compatibility of various SFP packages. The limitations of two-resistor model are discussed at the end.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call