Abstract

The thermal shock resistance of ceramics depends on the materials mechanical and thermal properties, also is affected by component geometry and external factors and so on. Therefore, the thermal shock resistance of ceramic materials is the comprehensive performance of their mechanical and thermal properties corresponding to the various heat conditions and external constraints. In the present work, a thermal shock resistance model of the ultra-high temperature ceramics which considered the effects of thermal environment and constraints was established. With this model, the influence of constraints on the thermal shock resistance and critical fracture temperature difference had been studied and an effective idea to improve thermal shock resistance for ceramic material and structure was found. Furthermore, the model was validated by finite element method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.