Abstract
The Guaymas Basin in the Gulf of California is characterized by active seafloor spreading, hydrothermal activity, and organic matter accumulation on the seafloor due to high sedimentation rates. In the hydrothermal sediments of Guaymas Basin, microbial community compositions and coexistence patterns change across steep gradients of temperature, potential carbon sources, and electron acceptors. Nonmetric multidimensional scaling and guanine-cytosine percentage analyses reveal that the bacterial and archaeal communities adjust compositionally to their local temperature regime. Functional inference using PICRUSt shows that microbial communities consistently maintain their predicted biogeochemical functions in different sediments. Phylogenetic profiling shows that microbial communities retain distinct sulfate-reducing, methane-oxidizing, or heterotrophic lineages within specific temperature windows. The preservation of similar biogeochemical functions across microbial lineages with different temperature adaptations stabilizes the hydrothermal microbial community in a highly dynamic environment. IMPORTANCE Hydrothermal vent sites have been widely studied to investigate novel bacteria and archaea that are adapted to these extreme environments. However, community-level analyses of hydrothermal microbial ecosystems look beyond the presence and activity of particular types of microbes and examine to what extent the entire community of bacteria and archaea is adapted to hydrothermal conditions; these include elevated temperatures, hydrothermally generated carbon sources, and inorganic electron donors and acceptors that are characteristic for hydrothermal environments. In our case study of bacterial and archaeal communities in hydrothermal sediments of Guaymas Basin, we found that sequence-inferred microbial function was maintained in differently structured bacterial and archaeal communities across different samples and thermal regimes. The resulting preservation of biogeochemical functions across thermal gradients is an important factor in explaining the consistency of the microbial core community in the dynamic sedimentary environment of Guaymas Basin.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.