Abstract

The thermal response of a Cu-Ti double-layered film is investigated after laser irradiation with ultrashort pulses (pulse duration τp = 50 fs, 800 nm laser wavelength) in submelting conditions by including the influence of nonthermal electrons. A revised two-temperature model is employed to account for the contribution of nonthermal electron distribution while the variation of the optical properties of the material during the laser beam irradiation is also incorporated into the model. Theoretical results can provide significant insight into the physical mechanism that characterize electron dynamics and can facilitate production of controllable ultra-high strength Cu-Ti alloys with promising applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.