Abstract

Objective of this study is to experimentally investigate the effect of centrifugal accelerations on thermal resistance of the rotating closed-loop pulsating heat pipe (RCLPHP). The RCLPHPs were made of a copper tube with internal diameter of 1.50 and 1.78 mm and bent into flower’s petal-shape and arranged into a circle with 11 turns. The evaporator section located at the outer end of the bundle while the condenser section placed around the center of the RCLPHP with no adiabatic section. Both sections had an identical length of 50 mm. R123, and ethanol was filled as working fluid respectively. The RCLPHP was installed on the test rig and it was rotated by the DC motor at the centrifugal acceleration of 0.5, 1, 3, 5, 10, and 20 times of the gravitational acceleration considering at the connection between the evaporator and condenser section. Heat input was generated by electrical annular-plate heaters and varied from 30 to 50, 100, 150, and 200 W. Ceramic papers, wooden plate, and insulation sheet were consecutively attached on the outer side of the heaters in order to prevent the heat loss from the heater. It can be concluded that when the centrifugal acceleration increases, the thermal resistance continuously decreases since the condensate flows back to the evaporator section more rapidly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call