Abstract

Recently, metal matrix composites (MMCs) have generated a considerable interest in the materials field because of their attractive physical and mechanical properties. However, during the fabrication of MMCs, thermal residual stresses are reportedly developed in the matrix as a result of the mismatch of the thermal expansion coefficients between the reinforcement and the matrix. It is well established that these residual stresses have a significant effect on the composite properties. For example, due to the presence of thermal residual stresses, it is almost never possible to achieve the maximum elastic response of the composites. In addition, yield stress and fracture toughness of the composites are significantly affected by thermal residual stresses. In this paper, a critical review of the published literature on thermal residual stresses in MMCs and their effect on composite properties are presented. Also, experimental and numerical techniques that are currently available to measure and estimate thermal residual stresses are reviewed and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.