Abstract

The influence of the thermal residual stress and reinforcement geometry on the creep behavior of a composite disc has been analyzed in this paper. The creep analysis in a rotating disc made of Al-SiC (particle/whisker) composite having hyperbolically varying thickness has been carried out using anisotropic Hoffman yield criterion and results obtained are compared with those using Hill's criterion ignoring difference in yield stresses. The steady state creep behavior has been described by Sherby's creep law. The creep parameters characterizing difference in yield stresses have been used from the available experimental results in literature. It is observed that the stresses are not much affected by the presence of thermal residual stress, while thermal residual stress introduces significant change in the strain rates in an anisotropic rotating disc. Secondly, it is noticed that the steady state creep rates in whisker reinforced disc with/without residual stress are observed to be significantly lower than those observed in particle reinforced disc with/without residual stress. It is concluded that the presence of residual stress in an anisotropic disc with varying thickness needs attention for designing a disc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.