Abstract

Thermal rectification based on a new strategy of nanostructuration has been assessed with nonequilibrium molecular dynamics and wave-packet propagation simulations. The use of asymmetric crystalline-core/amorphous-conical-shell nanowires creates a direction-dependent thermal conductivity due to variable axial and radial phonon propagation/confinement. The origin of this effect is related to the combination of a crystalline/amorphous interface parallel to the heat flux, together with the variable amount of amorphous coating due to the conical shell of the nanowire. Physical insights of the rectification are given by the mean free path of phonons, the axial and radial energy transfer, the energy diffusivity, and the vibrational density of states restricted to different constitutive elements of the nanowire.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.