Abstract

This paper focuses on the effects of suction as well as thermal radiation, chemical reaction, viscous dissipation and Joule heating on a two-dimensional natural convective flow of unsteady electrical magnetohydrodynamics (MHD) nanofluid over a linearly permeable stretching sheet. One significant aspect of this study is that electric field employed in revised Buongiorno model has been introduced in view of enhancement of thermal conductivity and consequently better convective heat transfer. The constitute governing equations have been converted into strong non-linear ordinary differential equations by employing suitable transformations and these transformed equations are solved by the Implicit finite difference. From this study, it is found that the presence of magnetic field and suction slows down the fluid motion while it enhances for higher values of an electric field which tends to firmness sticky effect. It is also found that enhancing thermal radiation leads to an increase in nanofluid temperature. The Nusselt number increases with both Brownian motion and unsteadiness parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.