Abstract

One of the reasons that thermally induced reactions are not considered a crucial mechanism in ultraviolet matrix-assisted laser desorption ionization (UV-MALDI) is the low ion-to-neutral ratios. Large ion-to-neutral ratios (10(-4)) have been used to justify the unimportance of thermally induced reactions in UV-MALDI. Recent experimental measurements have shown that the upper limit of the total ion-to-neutral ratio is approximately 10(-7) at a high laser fluence and less than 10(-7) at a low laser fluence. Therefore, reexamining the possible contributions of thermally induced reactions in MALDI may be worthwhile. In this study, the concept of polar fluid was employed to explain the generation of primary ions in MALDI. A simple model, namely thermal proton transfer, was used to estimate the ion-to-neutral ratios in MALDI. We demonstrated that the theoretical calculations of ion-to-neutral ratios exhibit the same trend and similar orders of magnitude compared with those of experimental measurements. Although thermal proton transfer may not generate all of the ions observed in MALDI, the calculations demonstrated that thermally induced reactions play a crucial role in UV-MALDI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.