Abstract
Vitrification is an effective way for the cryopreservation of cells and tissues. The critical cooling rates for vitrification solution are relatively high. It is reported that nanoparticles can improve the heat tranfer properties of solutions. To increase the heat transfer coefficient of aqueous cryoprotectant solutions, HA nanoparticles were added into PVP solutions (50%, 55%, 60%, w/w). The glass transition temperature, devitrification temperature and specific heat of PVP aqueous solutions with/without HA nanoparticles (0.1%, 0.5% and 1%, w/w) were measured by differential scanning calorimeter (DSC) at the cooling rate of 20°C/min and warming rate of 10°C/min. The change of density of above solutions with temperature was determined by using a straw that can reveal the volume change of solutions. The thermal conductivity was calculated based on the experimental data. A device that can be used to measure the thermal conductivity of vitrification solutions with/without nanoparticles was developed in this study. The results showed that the glass transition temperature, devitrification temperature and specific heat of PVP aqueous solutions with HA nanoparticles are larger than that without HA nanoparticles. The thermal conductivity of solutions with HA nanoparticles is larger than that without HA nanoparticles at a specific temperature. The lower the temperature, the smaller the difference of thermal conductivity between solutions with and without HA nanoparticles. The calculated thermal conductivity meets the measured data well.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have