Abstract
Active cooling techniques are often required to achieve high rates of heat dissipation in thermal management applications. Open-cell porous metals are good candidates for use as heat exchangers. This paper studies the fluid transport and thermal properties of porous copper samples with different pore structures manufactured using the LCS method. The results showed that the permeability increases with porosity but decreases with pore size. The thermal conductivity increases with relative density according to the power law. The effects of porosity and pore size on the heat transfer performance of the porous copper samples are significant, due to their effects on the permeability and thermal conductivity. For the porous copper samples with double-layer structures, the permeability follows the rule of mixture and the heat transfer coefficient can be predicted by a recently developed segment model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have