Abstract

AbstractThe surface of anatase TiO2 nanoparticles, obtained by the controlled hydrolysis of titanium tetrachloride, was modified by 6‐palmitate ascorbic acid. The surface modified TiO2 nanoparticles were dispersed in methyl methacrylate and mixed with a appropriate amount of poly(methyl methacrylate) to obtain a syrup. The nanocomposite sheets were made by bulk polymerization of the syrup in a glass sandwich cell using 2,2′‐azobisisobutyronitrile as initiator. The molar masses and molar mass distributions of synthesized poly(methyl methacrylate) samples were determined by gel permeation chromatography. The content of unreacted double bonds in synthesized samples was determined by 1H NMR spectroscopy. The influence of TiO2 nanoparticles on the thermal stability of the poly(methyl methacrylate) matrix was investigated using thermogravimetric analysis and differential scanning calorimetry. The synthesized samples of poly(methyl methacrylate) have different molar mass and polydispersity depending on the content of the surface modified TiO2 nanoparticles. The values of glass transition temperature of so prepared nanocomposite samples were lower than for pure poly(methyl methacrylate), while the glass transition temperature of samples preheated in inert atmosphere was very similar to the glass transition temperature of pure poly(methyl methacrylate). The thermal stability of nanocomposite samples in nitrogen and air was different from thermal stability of pure poly(methyl methacrylate). POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.