Abstract

The temperature dependence (25°C to 1000°C) of thermal conductivity for siliconized (reaction bonded) SiC and alpha phase (sintered) SiC irradiated to neutron fluences of 4 to 8 × 10 24 n/ m 2 ( E>1 MeV) were studied utilizing the heat pulse technique. The fluences are equivalent to 0.8 and 1.6 dpa and the sample temperature during irradiation was ~ 140°C. Silicon carbide exhibits a significant decrease in thermal conductivity after irradiation, specifically a factor of ~ 5 decrease is observed for siliconized SiC. Comparisons were made with SiC samples doped with 10B, 11B, and natural boron to investigate the effects of impurity doping. It was found that the presence of natural boron and 11B have no significant effect on the thermal conductivity of irradiated SiC, whereas SiC doped with 10B exhibits a slightly larger decrease in thermal conductivity due to the enhanced radiation damage (e.g., helium production) through the 10B (n, α) 7Li reaction. The lowering of the thermal conductivity after irradiation can explain the decreased resistance against thermal shcok of irradiated SiC. The decrease in thermal conductivity is due to enhanced phonon scattering by radiation-induced vacancies and dislocations. Results on annealing effects and comparison with mechanical properties are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.