Abstract

A thermal analysis was performed for the Advanced Gas Reactor test experiment (AGR-3/4) with time-varying gas gaps. The experiment was irradiated at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Several fuel irradiation experiments are planned for the AGR Fuel Development and Qualification Program that supports the development of the Very-High-Temperature Gas-Cooled Reactor (VHTR) under the Next-Generation Nuclear Plant (NGNP) project. AGR-3/4 combines two tests in a series of planned AGR experiments to test tristructural-isotropic (TRISO)-coated, low-enriched uranium oxy-carbide fuel. Forty-eight TRISO-fueled compacts were inserted into 12 separate capsules for the experiment (four compacts per capsule). The purpose of this analysis was to calculate the temperatures of each compact and graphite layer to obtain daily average temperatures using time (fast neutron fluence)-varying gas gaps and to compare with experimentally measured thermocouple data. A finite-element heat transfer model was created for each capsule using the commercial code ABAQUS. Model results are compared to thermocouple data taken during the experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call