Abstract

This research is deal with thermal buckling and post-buckling of carbon nanotube/fiber/polymer composite beams. The beam is considered to be under uniform temperature rise. Firstly, the effective material properties of a two phase nanocomposite consisting of CNT and polymer are extracted. Then, the modified Chamis rule is utilized to obtain the equivalent thermo-mechanical properties of multiscale hybrid composite (MHC). Based on the first order shear deformation theory, Von-Karman type of geometrically nonlinear strain-deformation equations and also the virtual work rule, the equilibrium equations of a three phace composite beam are derived. Bifurcation buckling and also the thermal post-buckling is analysed using the generalized differential quadrature technique. In the thermal buckling phenomena, a linear eigenvalue problem is solved; however, due to the nonlinearity, the thermal postbuckling study is performed using an iterative displacement control strategy. After validation study, several novel results demonstrate the influences of length-to-thickness ratio, agglomeration of applied CNTs and fibers in the composite media and number and orientation of layers on the critical temperature and displacement loading path.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call