Abstract

Thermal buckling and postbuckling analysis of functionally graded (FG) beams is presented. The governing equations are based on the first-order shear deformation beam theory (FSDT) and the geometrical nonlinearity is modeled using Green's strain tensor in conjunction with the von Karman assumptions. For discretizing the governing equations and the related boundary conditions differential quadrature method (DQM) as a simple and computationally efficient numerical tool is used. Based on displacement control method, a direct iterative method is employed to obtain thermal postbuckling behavior of FG beams with different boundary conditions and geometrical parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.