Abstract
Thermal buckling and postbuckling analysis of functionally graded (FG) beams is presented. The governing equations are based on the first-order shear deformation beam theory (FSDT) and the geometrical nonlinearity is modeled using Green's strain tensor in conjunction with the von Karman assumptions. For discretizing the governing equations and the related boundary conditions differential quadrature method (DQM) as a simple and computationally efficient numerical tool is used. Based on displacement control method, a direct iterative method is employed to obtain thermal postbuckling behavior of FG beams with different boundary conditions and geometrical parameters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have