Abstract
Thermal post-buckling paths of homogeneous, isotropic, square plate configurations resting on elastic foundation (Winkler type) subjected to biaxial compressive thermal loads are expressed as simple closed-form solutions by using the Rayleigh–Ritz method based on coupled displacement fields. Geometric non-linearity of von-Karman type is considered. The in-plane displacement field variations used in the formulation of Rayleigh–Ritz method are derived by using the governing in-plane static differential equations of the plate which in turn simplifies the difficulty of assuming an in-plane displacement field variations of the square plate. Accuracy and robustness of the proposed closed-form solutions are demonstrated by using the non-linear finite element formulation results which are obtained from an equilibrium path approach.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have