Abstract

This study examined the performance of reversed Brayton cycle heat pumps to supply heat above 300 °C. The aim was to overcome the current temperature limitations faced by heat pump technology in industrial heat supply sectors by examining the viability of the reversed Brayton cycle. In particular, the effects of the operating conditions on the cycle performance, such as the waste and return heat temperatures, were analyzed through thermal performance analysis. The reversed Brayton cycle heat pumps showed improved performance over conventional vapor compression cycle heat pumps when a heat supply above 215 °C was required. Furthermore, integrating additional heat exchangers into the cycle configuration was proposed in this study as a method to enhance waste heat utilization and recover unused heat from industrial processes. By incorporating preheating and recuperated cycles, these modifications broaden the operational range under the same operating conditions. They also improve the coefficient of performance (COP) of the reference cycle by up to 23% and 27.4%, respectively. This study explored the potential of reversed Brayton cycle heat pumps to supply heat above 300 °C and provided fundamental guidelines for the efficient design and operation of reversed Brayton cycle heat pumps. The results are expected to enhance our understanding of the performance characteristics of reversed Brayton cycle heat pump technology and expand its use as an alternative to fossil-fuel-based heat supply systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.