Abstract

Drying is a common process in industries and usually discharges much waste heat. Heat pump is an energy efficient approach to upgrading waste heat to a higher drying temperature. In this paper, a novel pressure boost thermochemical sorption heat pump (TSHP) is proposed. Different from existing salt/ammonia heat pump cycles, a compressor is installed between two reactors to drive the cycle so that only one sorbent is needed in the cycle and the exothermic process becomes continuous. Thermodynamic analysis shows that when desorption and sorption temperatures are 70 °C and 120 °C, the COP (coefficient of performance) of the new cycle with working pair SrCl2/NH3 is 6.5, which is remarkably higher than that of conventional vapor compression heat pump (VCHP) cycle under same operating conditions. Furthermore, for higher temperature rise, a hybrid cascade heat pump cycle is proposed as well. The VCHP cycle with refrigerant R134a is selected as the low stage cycle, while the TSHP cycle with sorbent SrCl2 is chosen as the high stage cycle. For the evaporating temperature 30 °C and sorption temperature 120 °C, the cascade cycle COP is 2.4, relative to 2.0 COP of conventional vapor compression cascade heat pump cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.