Abstract

Textile industry is one of the most important sectors of the global economy, but at the same rate as production, millions of tons of textile waste (TW) are generated worldwide, causing negative impacts on the environment. To mitigate CO2 emissions and TW landfilled, its reuse and recycling are considered promising in fulfilling the circular economy principles. Furthermore, its valorization as building materials components may be a contribution towards sustainable construction. Studies already developed in this domain demonstrate that more research work is needed so the suitability of TW as building insulation materials can be assessed. In this context, it is intended with the research work here presented to propose cement-based lightweight blocks (LWB) incorporating TW and discuss their application as insulation materials purposes.The studied TW was fabric leftovers from the textile industry, constituted by 70 % wool, 25% viscose, and 5% elastane. TW percentages of 6.25%, 8.16%, and 8.75% were considered in the cement mixture composition of LWB1, LWB2 and LWB3, respectively, and their influence on the LWB thermal performance was analyzed. The LWB thermal performance characterization was carried out by analyzing heat fluxes, inner surface temperatures, thermal transmission coefficients, and infrared thermal imaging. The obtained results revealed their suitability for thermal insulation applications. Values of 0.34 m2°C/W, 0.61 m2°C/W, and 0.67 m2°C/W were estimated for the thermal resistance of LWB1, LWB2 and LWB3, respectively, achieving higher thermal stability when higher percentage of TW is incorporated in the cementitious mixture composition. A comparison of the LWB with currently available building materials, such as simple masonry walls and insulating concrete forms, was also performed showing promising results for the proposed textile waste-based materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call