Abstract

Thermal resistance and crosstalk have been investigated for a source package consisting of a monolithic, multilaser heterojunction array mounted on a single crystalline silicon substrate, which is in turn laminated to a copper heatsink. Models for 2-D and 3-D heat spreading are used to calculate the heat flow distribution and to obtain upper and lower bounds for both resistance of single devices and crosstalk in arrays. Results for experimental five-laser arrays are shown to fall within these limits. Active cooling is required to maintain junctions at safe operating temperatures prerequisite to stable, long-lived operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.