Abstract

With the development of problems caused by burning fossil fuels as well as limited and exhaustible energy resources, there is a growing interest in clean and renewable energies as a reliable alternative to fossil fuels. The thermal performance of a dual-porous heat exchanger (SDPHE) in building heating is investigated in this article. The characteristic equations for both porous media and the solid wall are discretized and solved numerically by finite element method (FEM) based on finite volume. The efficacy of various parameters including the Reynolds number, Darcy number and porosity of both porous media, middle wall thickness, middle wall material and volume fraction on the thermal performance of dual-porous heat exchanger is demonstrated and interpreted. According to the results, as the Darcy number and the congestion of nanoparticles on each side increased, the effectiveness of dual-porous heat exchanger is increased. In contrast, an increase in porosity on each side caused a decline in the effectiveness of dual-porous heat exchanger. Moreover, the thermal performance first increased and then reduced with an increase in hot side Reynolds number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call