Abstract

To improve the service life and performance of lithium cells in new energy electric vehicles, the thermal management system of lithium cells in new energy vehicles is analyzed through simulation experiments in this research. Firstly, the calculation model of set of cells and cooling structure is built, and then a lithium cell management system is designed. On this basis, the cooling structure of lithium cell is optimized. Finally, the simulation results of the calculation model and the simulation results of the heat dissipation performance of the thermal management system in the cooling structure of lithium cell are analyzed, including influence of three factors (coolant flow, inlet temperature of coolant, and discharge multiple) on the heat dissipation of the thermal management system of lithium cell. The results show that the calculation model constructed in this research is feasible. When the optimal structure, coolant flow value, inlet temperature of coolant, and discharge multiple are determined, the thermal management system of lithium cell has a good cooling effect under the optimal parameters. Therefore, the results of this research can provide a good theoretical basis for heat management and heat dispersion technology in new energy electric vehicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call