Abstract

We describe in detail the growth procedures and properties of thermal silicon dioxide grown in a limited and dilute oxygen atmosphere. Thin thermal oxide films have become increasingly important in recent years due to the continuing down-scaling of ultra large scale integration metal oxide silicon field effect transistors. Such films are also of importance for organic transistors where back-gating is needed. The technique described here is novel and allows self-limited formation of high quality thin oxide films on silicon surfaces. This technique is easy to implement in both research laboratory and industrial settings. Growth conditions and their effects on film growth have been described. Properties of the resulting oxide films, relevant for microelectronic device applications, have also been investigated and reported here. Overall, our findings are that thin, high quality, dense silicon dioxide films of thicknesses up to 100 nm can be easily grown in a depleted oxygen environment at temperatures similar to that used for usual silicon dioxide thermal growth in flowing dry oxygen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.