Abstract

AbstractTo predict the temperature distribution in the ladle wall during the preheating process a two dimensional model was developed. The model calculated the heat transfer and the velocity field in the gas phase inside the ladle as well as the heat transfer in the solid walls during the preheating process. Measurements of the temperature in an industrial lade were carried out using an infrared radiation (IR) camera. The measurements were made inside and outside the ladle. The model predictions were found to be in reasonably good agreement with the measured temperatures. It was found that the preheating time could be minimized when the working lining became thinner. The effect of the distance between the lid and the ladle was also studied by the model. The results indicated that there was no significant temperature change on the upper side wall of the ladle. On the lower side wall and bottom the temperature changed slightly. The temperature difference in the lower part of the ladle could be explained by the larger flame distance from the bottom layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.