Abstract

The thermosonic bonding technique is a widely used method for Cu wire interconnections. However, issues arise due to volumetric changes in intermetallic compounds (IMCs) formed at the Cu-Al bonding interface, leading to voids in the Cu-Al IMC layer. This problem is exacerbated after annealing, such as in high-temperature Storage (HTS). In this study, a statistical modelling approach was employed to quantitatively analyse stress, studying the evolution and characteristics of the interfacial microstructure in the thermosonic Cu wire-Al bond pad system. Microstructural analysis focused on Cu-Al IMC crystallography and compositional classification. A stress model was proposed, considering both thermal misfit and diffusion-induced stresses. Results showed that interfacial stress generally increased with higher bonding temperatures. The influence of forming gas supply was relatively minor, with oxide layers minimally impeding Cu-Al interdiffusion during Cu-Al IMC formation. This stress modelling technique hold potential as a valuable failure analysis tool for implementing Cu wire in various industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call