Abstract

This research aimed to improve the thermo-physical properties of plam oil with NaA zeolite. Palm oil was selected for heating oil due to its high flash point and environmental friendliness compared to synthetic or mineral oil. The effect of NaA zeolite concentration suspended in palm oil was investigated in terms of the specific heat capacity (Cp), viscosity (μ), viscosity index (VI), thermal analysis (TGA) and density (ρ) of palm oil. The NaA zeolite was synthesized by crystallization technique, and X-ray diffraction analysis was performed to determine NaA zeolite crystallinity. The size of NaA zeolite was measured using a particle size analyzer. The average size of the synthesized NaA zeolite was 4767 nm. After grinding process for 180 min, the average size of zeolite decreased to 632 nm. An average 632 nm NaA zeolite particle size was added to palm oil at 0.25, 0.5, 0.75 and 1 wt%. The results showed that when the NaA zeolite concentration increased, the nanofluid’s viscosity at 40 °C and 100 °C was increased. The addition of 1 wt% NaA zeolite resulted in the nanofluid having a maximum viscosity of 41.31 and 8.47 cSt at 40 °C and 100 °C, respectively. The highest viscosity index was 195 cSt when added with 0.5 wt% NaA zeolite. The density of palm oil slightly increased with increasing NaA zeolite concentrations. The specific heat capacity of palm oil increased when NaA zeolite was added. The results showed that NaA zeolite allowed palm oil to store heat energy better than palm oil, enabling it to release and absorb more heat during heat transfer. Thermogravimetric analysis, palm oil initiated to degrade at 263 °C, while the addition NaA zeolite in palm oil indicated that palm oil initiated to degrade at 350 °C. The shift in the degradation curve demonstrated that the nanofluid could withstand high temperatures. Adding NaA zeolite to palm oil showed that palm oil could endure more heat and has a long service life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.