Abstract

Thin-film magnetoelectric sensors, i.e., composites of magnetostrictive and piezoelectric materials, are able to measure very low magnetic flux densities in the picotesla range. In order to further improve the limit of detection it is of high importance to understand and quantify the relevant noise sources. In this paper, a common model for the deflection noise in vibrational structures is applied to the cantilever structure of resonant magnetoelectric sensors. By means of deflection and noise measurements the existence of thermal-mechanical noise even in sensor structures with a size in the centimeter range is proven. Based on these findings a noise equivalent circuit is suggested which allows not only the distinction between the impact of different sensor-intrinsic noise sources and also the involvement of the preamplifier noise. We found that the thermal-mechanical noise is the dominant noise source if direct signal detection is performed at the first bending resonance frequency of the sensor. However, this kind of noise is not the limiting influence when applying magnetic frequency-conversion techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call